Redox Signaling Between Endothelium and Aortic Smooth Muscle: Effect of Dietary Salt

Supplemental Information

Kai er Ying,¹ Wenguang Feng,¹ Wei-Zhong Ying,¹ Xingsheng Li, ⁴ Dongqi Xing,¹ Yong Sun,³ Yabing Chen,^{3,5} and Paul W. Sanders^{1,2,5}

¹Department of Medicine,

²Department of Cell, Developmental and Integrative Biology,

³Department of Pathology, and

⁴Department of Urology,

University of Alabama at Birmingham, Birmingham, AL, 35294-0007

and

⁵Birmingham Department of Veterans Affairs Health Care System, Birmingham, AL, 35233

Correspondence to:

Paul W. Sanders, MD
Division of Nephrology
Lyons-Harrison Research Building, Room 642
1720 Second Avenue, South
University of Alabama at Birmingham
Birmingham, AL 35294-0007
psanders@uab.edu

S.1. Endothelial cells in culture produce hydrogen peroxide when incubated with TGF-β1.

Supplemental Figure 1. Endothelial cells produce H_2O_2 . Endothelial cells incubated overnight in medium that contained vehicle (4 μ M HCl) or active TGF- β in concentrations between 0.3 and 10 ng/ml demonstrated a dose-dependent increase in medium H_2O_2 concentrations detected using Amplex® Red (n=3-4 experiments in each group; *P<0.05; ns, not significant; one-way ANOVA).

S.2. Development and characterization of mice lacking Nox4 in endothelium.

Prior detailed characterization of transgenic mice with the *VE-Cad-CreER*⁷² genotype using the ROSA26R reporter mouse demonstrated widespread recombination in the endothelium of embryonic, neonatal and adult tissues, but not in cells of hematopoietic lineage [1]. Using transgenic mice expressing VE-cadherin-Cre recombinase [2], we generated endothelium-specific *Nox4* knockout mice (*VE-Cad-Cre*⁺/*Nox4*^{fl/fl} genotype); the *Nox4* floxed mouse was a gift from Dr. Junichi Sadoshima [3]. This murine strain (*VE-Cad-Cre*⁺/*Nox4*^{fl/fl}), as well as littermate controls (*VE-Cad-Cre*⁻/*Nox4*^{fl/fl}), were generated using a breeding strategy that only crossed female floxed mice with male Cre mice to minimize the potential genetic (mitochondria) instability and ensure reproducibility. Male VE-Cadherin-Cre mice (*VE-Cad-Cre*⁺ genotype) were mated with female mice (*Nox4*^{fl/fl} genotype), and then *VE-Cad-Cre*⁺ male mice generated from F₁ (*VE-Cad-Cre/Nox4*^{flox/wt} genotype) were backcrossed to female mice (*Nox4*^{fl/fl} genotype). All animals had C57BL/6 genetic background. We confirmed the genotypes of all the mice by PCR genotyping of tail snips. F₂ mice were genotyped using Real-Time PCR based on Taqman technology. Three sets of primers and probes were designed to identify *VE-Cadherin-Cre*, *Nox4*-flox and *Nox4*-wt alleles (**Supplemental Table 1**).

Supplemental Table 1. Primers and probes used to identify the alleles of interest.					
Genotype	Primer	Probe			
VE-cadherin-Cre	TTAATCCATATTGGCAGAACGAAAACG	CTTAATCATCTAGGAGGAATTC			
	CAGGCTAAGTGCCTTCTCTACA				
Nox4-flox	TGGTAAGTATGGCAAGTTCCATTTTCT	CTTAATCATCTAGGAGGAATTC			
	TCAGACCTGAAGTTCCTATACTTTCTAGAG				
Nox4-wt	TGGTAAGTATGGCAAGTTCCATTTTCT	TCAGTGACTCCTAGATGATTAA			

GGGTGGGATAAGTTCTACAATGAAGT

Duplicate studies of the results of representative PCR experiments were shown below (**Supplemental Figure 2**).

Supplemental Figure 2. Representative real-time PCR results using primers that identify (A, VE-Cadherin-Cre alleles; B, Nox4-flox alleles, and C, Nox4-WT alleles).

The raw data of copy number and identification of animal genotype was shown in the accompanying table (Supplemental Table 2).

Supplemental Table 2. Analysis of PCR amplicons using Cre, <i>Nox4</i> -flox, and <i>Nox4</i> -wt primers. The relative values of each probe were normalized by housekeeping gene and shown in the table.					
Animal	Cre	Nox4-flox	Nox4-wt	Genotype	
1	0.002	0.390	0.931	Cre ⁻ /Nox4 ^{fl/wt}	
2	3.998	0.082	0.566	Cre⁺/Nox4 ^{wt/wt}	
3	0.007	0.375	0.001	Cre ⁻ /Nox4 ^{fl/fl}	
4	2.640	0.278	0.000	Cre⁺/Nox4 ^{fl/fl}	

Along with these confirmatory studies, additional immunofluorescence experiments demonstrated selective loss of endothelial NOX4 in the *VE-Cad-Cre*⁺/*Nox4*^{fl/fl} strain (**Supplemental Figure 3**).

Supplemental Figure 3. Immunohistochemistry of aortic sections from two mice show the anticipated loss of NOX4 in endothelium in the *Nox4* KO mice (left panel) and preservation of NOX4 in mice lacking the VE-Cad-Cre recombinase (right panel). The endothelial cell layer was identified using antibody to CD31 (green color) and NOX4 was identified using anti-NOX4 antibody (red color). Nuclei were counterstained with DAPI (blue color).

References

- [1] A. Monvoisin, J.A. Alva, J.J. Hofmann, A.C. Zovein, T.F. Lane, M.L. Iruela-Arispe, VE-cadherin-CreERT2 transgenic mouse: a model for inducible recombination in the endothelium, Dev Dyn 235(12) (2006) 3413-22.
- [2] J.A. Alva, A.C. Zovein, A. Monvoisin, T. Murphy, A. Salazar, N.L. Harvey, P. Carmeliet, M.L. Iruela-Arispe, VE-Cadherin-Cre-recombinase transgenic mouse: a tool for lineage analysis and gene deletion in endothelial cells, Dev Dyn 235(3) (2006) 759-67.
- [3] J. Kuroda, T. Ago, S. Matsushima, P. Zhai, M.D. Schneider, J. Sadoshima, NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart, Proc Natl Acad Sci U S A 107(35) (2010) 15565-70.